Synthesis and characterization of nanostructured of TiO2 materials for controlled release of antiepileptic drugs / Cristian Eduardo Proaño Reyes ; tutor Gema González Vásquez

By: Proaño Reyes, Cristian Eduardo [autor]Contributor(s): González Vásquez, Gema [tutor] | Universidad de Investigación de Tecnología Experimental Yachay. Escuela de Ciencias Físicas y NanotecnologíaMaterial type: TextTextLanguage: English Summary language: Spanish Copyright date: Urcuquí, 2019Description: 65 hojas : ilustraciones (algunas a color) ; 30 cm + 1 CD-ROMSubject(s): Nanopartículas | Nanocompuestos (Materiales) | Materiales biomédicos | Epilepsia -- Terapia y tratamiento | Nanotecnología -- Trabajos y disertaciones académicasDDC classification: 615.19 Online resources: Ver recurso Dissertation note: Trabajo de integración curricular (Ingeniero en Nanotecnología). Universidad de Investigación de Tecnología Experimental Yachay. Urcuquí, 2019 Summary: Avanza la ciencia, y el futuro de la tecnología se presenta en nuevas áreas, como el uso de la nanotecnología en el campo de la medicina, es cada vez más relevante debido a las grandes ventajas que ofrece la aplicación de esta ciencia. La epilepsia es un trastorno neurológico caracterizado por una actividad eléctrica anormal en el cerebro, que puede provocar convulsiones parciales o generalizadas. El objetivo del tratamiento con medicamentos antiepilépticos es liberar el medicamento en cantidades suficientes para reducir la frecuencia y la gravedad de las convulsiones. Algunos sistemas de liberación controlada se desarrollaron con el objetivo de mejorar la biodisponibilidad y reducir los efectos adversos presentes en las terapias convencionales. Una alternativa para administrarlos en el cerebro son los sistemas de administración a nanoescala, ya que debido a su tamaño (1-100 nm) son ideales para la administración oral y parenteral. El objetivo de este trabajo fue la síntesis de materiales de TiO2 nanoestructurados por el método sol-gel, que permitió la incorporación de fármacos antiepilépticos con difenilhidatoína al 1% (DPH) y ácido valproico al 3% (VPA) respectivamente, para obtener sistemas de liberación controlada. La caracterización de las nanoestructuras sintetizadas se realizó utilizando las técnicas de FTIR, UV-Vis DRS, XRD, BET y TEM. La cinética de liberación in vitro de las nanoestructuras contenidas con DPH se evaluó y ajustó a diferentes modelos matemáticos. La cinética de la liberación in vitro del material cargado con DPH mostró un ajuste al modelo de Korsmeyer-Peppas, indicativo de un fenómeno de liberación de difusión de Fickian.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Call number Copy number Status Date due Barcode Item holds
Trabajo de grado en papel Biblioteca del Campus
615.19 P9621s 2019 (Browse shelf (Opens below)) 1 Not for loan TIC000049
Trabajo de grado en CD-ROM Biblioteca del Campus
615.19 P9621s 2019 (Browse shelf (Opens below)) 1 Not for loan TCD000049
Total holds: 0

Trabajo de integración curricular (Ingeniero en Nanotecnología). Universidad de Investigación de Tecnología Experimental Yachay. Urcuquí, 2019

Incluye referencias bibliográficas (páginas 46-52)

Trabajo de integración curricular con acceso abierto

Texto (Hypertexto links)

Avanza la ciencia, y el futuro de la tecnología se presenta en nuevas áreas, como el uso de la nanotecnología en el campo de la medicina, es cada vez más relevante debido a las grandes ventajas que ofrece la aplicación de esta ciencia. La epilepsia es un trastorno neurológico caracterizado por una actividad eléctrica anormal en el cerebro, que puede provocar convulsiones parciales o generalizadas. El objetivo del tratamiento con medicamentos antiepilépticos es liberar el medicamento en cantidades suficientes para reducir la frecuencia y la gravedad de las convulsiones. Algunos sistemas de liberación controlada se desarrollaron con el objetivo de mejorar la biodisponibilidad y reducir los efectos adversos presentes en las terapias convencionales. Una alternativa para administrarlos en el cerebro son los sistemas de administración a nanoescala, ya que debido a su tamaño (1-100 nm) son ideales para la administración oral y parenteral. El objetivo de este trabajo fue la síntesis de materiales de TiO2 nanoestructurados por el método sol-gel, que permitió la incorporación de fármacos antiepilépticos con difenilhidatoína al 1% (DPH) y ácido valproico al 3% (VPA) respectivamente, para obtener sistemas de liberación controlada. La caracterización de las nanoestructuras sintetizadas se realizó utilizando las técnicas de FTIR, UV-Vis DRS, XRD, BET y TEM. La cinética de liberación in vitro de las nanoestructuras contenidas con DPH se evaluó y ajustó a diferentes modelos matemáticos. La cinética de la liberación in vitro del material cargado con DPH mostró un ajuste al modelo de Korsmeyer-Peppas, indicativo de un fenómeno de liberación de difusión de Fickian.

There are no comments on this title.

to post a comment.