Amazon cover image
Image from Amazon.com

A first course in abstract algebra / John B. Fraleigh ; historical notes by Victor Katz.

By: Contributor(s): Material type: TextTextLanguage: English Copyright date: Boston : Addison-Wesley, 2003Edition: Seventh editionDescription: xii, 520 pages : illustrations ; 24 cmISBN:
  • 0201763907
  • 9780201763904
Subject(s): DDC classification:
  • 512.02
Partial contents:
Sets and relations -- I. Groups and subgroups. Introduction and examples -- Binary operations -- Isomorphic binary structures -- Groups -- Subgroups -- Cyclic groups -- Generating sets and Cayley digraphs -- II. Permutations, cosets, and direct products. Groups of permutations -- Orbits, cycles, and the alternating groups -- Cosets and the theorem of Lagrange -- Direct products and finitely generated Abelian groups -- Plane isometries -- III. Homomorphisms and factor groups. Homomorphisms -- Factor groups -- Factor-group computations and simple groups -- Group action on a set -- Applications of G-sets to counting -- IV. Rings and fields. Rings and fields -- Integral domains -- Fermat's and Euler's theorems -- The field of quotients of an integral domain -- Rings of polynomials -- Factorization of polynomials over a field -- Noncommutative examples -- Ordered rings and fields -- V. Ideals and factor rings. Homomorphisms and factor rings -- Prime and maximal ideas -- Gröbner bases for ideals -- VI. Extension fields. Introduction to extension fields -- Vector spaces -- Algebraic extensions -- Geometric constructions -- Finite fields -- VII. Advanced group theory. Isomorphism theorems -- Series of groups -- Sylow theorems -- Applications of the Sylow theory -- Free Abelian groups -- Free groups -- Group presentations -- VIII. Groups in topology. Simplicial complexes and homology groups -- Computations of homology groups -- More homology computations and applications -- Homological algebra -- IX. Factorization. Unique factorization domains -- Euclidean domains -- Gaussian integers and multiplicative norms -- X. Automorphisms and Galois theory. Automorphisms of fields -- The isomorphism extension theorem -- Splitting fields -- Separable extensions -- Totally inseparable extensions -- Galois theory -- Illustrations of Galois theory -- Cyclotomic extensions -- Insolvability of the quintic -- Appendix: Matrix algebra.
Abstract: Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
Colección general Colección general Biblioteca Yachay Tech 512.02 F812f 2003 (Browse shelf(Opens below)) Ej. 1 Available 005746
Total holds: 0

Includes index.

Includes bibliographical references (pages 483-485).

Sets and relations -- I. Groups and subgroups. Introduction and examples -- Binary operations -- Isomorphic binary structures -- Groups -- Subgroups -- Cyclic groups -- Generating sets and Cayley digraphs -- II. Permutations, cosets, and direct products. Groups of permutations -- Orbits, cycles, and the alternating groups -- Cosets and the theorem of Lagrange -- Direct products and finitely generated Abelian groups -- Plane isometries -- III. Homomorphisms and factor groups. Homomorphisms -- Factor groups -- Factor-group computations and simple groups -- Group action on a set -- Applications of G-sets to counting -- IV. Rings and fields. Rings and fields -- Integral domains -- Fermat's and Euler's theorems -- The field of quotients of an integral domain -- Rings of polynomials -- Factorization of polynomials over a field -- Noncommutative examples -- Ordered rings and fields -- V. Ideals and factor rings. Homomorphisms and factor rings -- Prime and maximal ideas -- Gröbner bases for ideals -- VI. Extension fields. Introduction to extension fields -- Vector spaces -- Algebraic extensions -- Geometric constructions -- Finite fields -- VII. Advanced group theory. Isomorphism theorems -- Series of groups -- Sylow theorems -- Applications of the Sylow theory -- Free Abelian groups -- Free groups -- Group presentations -- VIII. Groups in topology. Simplicial complexes and homology groups -- Computations of homology groups -- More homology computations and applications -- Homological algebra -- IX. Factorization. Unique factorization domains -- Euclidean domains -- Gaussian integers and multiplicative norms -- X. Automorphisms and Galois theory. Automorphisms of fields -- The isomorphism extension theorem -- Splitting fields -- Separable extensions -- Totally inseparable extensions -- Galois theory -- Illustrations of Galois theory -- Cyclotomic extensions -- Insolvability of the quintic -- Appendix: Matrix algebra.

Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.

There are no comments on this title.

to post a comment.

Ayuda

X

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono:+593 6299 9500 Ext. 2517

Horario de atención:

X

BIBLIOTECA UNIVERSIDAD YACHAY TECH

  • Área: Acervo Impreso
    Lunes a Viernes de 08h00 a 20h30
    Sábado de 08h00 a 16h30
  • Área: Ingenio
    Abierto 24 horas 7 días
  • Área: Bloque de Servicios, 2do. Piso
    Espacios de Estudio Grupal e Individual, abierto 24 horas 7 días

Recuerda que los espacios son compartidos por toda la comunidad, por lo que debes hacer un uso adecuado
del tiempo que los ocupes, mantenerlos limpios y evitar el daño a las instalaciones y bienes materiales.

También puedes usar nuestros canales de comunicación:

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono: +593 6299 9500 Ext. 2517
Ubicación: San Miguel de Urcuquí, Hacienda San José s/n y Proyecto Yachay

Video

X