Amazon cover image
Image from Amazon.com

Weakly connected nonlinear systems : boundedness and stability of motion / Anatoly Martynyuk, Larisa Chernetskaya, Vladislav Martynyuk.

By: Contributor(s): Material type: TextTextLanguage: English Original language: Russian Series: Pure and applied mathematics ; 305Description: xv, 212 pages : illustrations ; 24 cmISBN:
  • 9781466570863
Subject(s): DDC classification:
  • 003.75
Partial contents:
Analysis of the boundedness of motion -- Analysis of the stability of motion -- Stability of weakly perturbed systems -- Stability of systems in banach spaces.
Abstract: "Preface The investigation of nonlinear systems with a small parameter is attributable by a lot of modern problems of mechanics, physics, hydrodynamics, electrodynamics of charge-particle beams, space technology, astrodynamics and many others. The key problem in solution of various applied problems is that of the stability of solutions of systems of equations in various senses. The methods of the classical stability theory, if appropriately adapted, may be applied to systems containing a small parameter. The progress in solving problems of the theory of stability and nonlinear perturbations is associated with finding way around significant difficulties connected with the growth of the number of variables characterizing the state of a system, which may include critical variables. In addition, the presence of critical variables may result in a situation when not only the first approximation cannot solve a stability problem, but also the further nonlinear approximations below some order cannot solve it. New approaches recently developed for systems with a small parameter may include the following. A. The development of the direct Lyapunov method for the study of the boundedness and stability of systems with a finite number of degrees of freedom with respect to two different measures. B. The analysis of stability on the basis of the combination of the concepts of the direct Lyapunov method and the averaging method of nonlinear mechanics for some classes of linear and nonlinear systems. C. The generalization of the direct Lyapunov method on the basis of the concepts of the comparison principle and the averaging method of nonlinear mechanics. D. The development of the method of matrix-valued Lyapunov functions and its application in the study of stability of"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
Colección general Colección general Biblioteca Yachay Tech 003.75 M3887w 2013 (Browse shelf(Opens below)) Ej. 1 Available 000585
Total holds: 0

"A Chapman & Hall book."

Includes bibliographical references ( pages 203-210) and index.

Analysis of the boundedness of motion -- Analysis of the stability of motion -- Stability of weakly perturbed systems -- Stability of systems in banach spaces.

"Preface The investigation of nonlinear systems with a small parameter is attributable by a lot of modern problems of mechanics, physics, hydrodynamics, electrodynamics of charge-particle beams, space technology, astrodynamics and many others. The key problem in solution of various applied problems is that of the stability of solutions of systems of equations in various senses. The methods of the classical stability theory, if appropriately adapted, may be applied to systems containing a small parameter. The progress in solving problems of the theory of stability and nonlinear perturbations is associated with finding way around significant difficulties connected with the growth of the number of variables characterizing the state of a system, which may include critical variables. In addition, the presence of critical variables may result in a situation when not only the first approximation cannot solve a stability problem, but also the further nonlinear approximations below some order cannot solve it. New approaches recently developed for systems with a small parameter may include the following. A. The development of the direct Lyapunov method for the study of the boundedness and stability of systems with a finite number of degrees of freedom with respect to two different measures. B. The analysis of stability on the basis of the combination of the concepts of the direct Lyapunov method and the averaging method of nonlinear mechanics for some classes of linear and nonlinear systems. C. The generalization of the direct Lyapunov method on the basis of the concepts of the comparison principle and the averaging method of nonlinear mechanics. D. The development of the method of matrix-valued Lyapunov functions and its application in the study of stability of"--

There are no comments on this title.

to post a comment.

Ayuda

X

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono:+593 6299 9500 Ext. 2517

Horario de atención:

X

BIBLIOTECA UNIVERSIDAD YACHAY TECH

  • Área: Acervo Impreso
    Lunes a Viernes de 08h00 a 20h30
    Sábado de 08h00 a 16h30
  • Área: Ingenio
    Abierto 24 horas 7 días
  • Área: Bloque de Servicios, 2do. Piso
    Espacios de Estudio Grupal e Individual, abierto 24 horas 7 días

Recuerda que los espacios son compartidos por toda la comunidad, por lo que debes hacer un uso adecuado
del tiempo que los ocupes, mantenerlos limpios y evitar el daño a las instalaciones y bienes materiales.

También puedes usar nuestros canales de comunicación:

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono: +593 6299 9500 Ext. 2517
Ubicación: San Miguel de Urcuquí, Hacienda San José s/n y Proyecto Yachay

Video

X