Amazon cover image
Image from Amazon.com

Multi-pitch estimation / Mads Græsbøll Christensen, Andreas Jakobsson.

By: Contributor(s): Material type: TextTextLanguage: English Series: Synthesis lectures on speech and audio processing (Online) ; # 5.Publication details: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.Description: xvi, 142 p. ill. 24 cmISBN:
  • 9781598298390
  • 9781598298383
Uniform titles:
  • Synthesis digital library of engineering and computer science.
Subject(s): DDC classification:
  • 006.454
Contents:
Fundamentals -- Introduction -- Related work -- Some applications -- Signal models -- Covariance matrix model -- Speech and audio signals -- Other signal models -- Parameter estimation bounds -- Evaluation of pitch estimators -- Statistical methods -- Introduction -- Maximum likelihood estimation -- Noise covariance matrix estimation -- White noise case -- Some maximum a posteriori estimators -- MAP model and order selection -- Fast multi-pitch estimation -- Expectation maximization -- Another related method -- Harmonic fitting -- Some results -- Discussion -- Filtering methods -- Introduction -- Comb filtering -- Filterbank interpretation of NLS -- Optimal filterbank design -- Optimal filter design -- Asymptotic analysis -- Inverse covariance matrix -- Variance and order estimation -- Fast implementation -- Some results -- Discussion -- Subspace methods -- Introduction -- Signal and noise subspace identification -- Subspace properties -- Pre-whitening -- Rank estimation using Eigenvalues -- Angles between subspaces -- Estimation using orthogonality -- Robust estimation -- Estimation using shift-invariance -- Some results -- Discussion -- Amplitude estimation -- Introduction -- Least squares estimation -- Capon- and APES-like amplitude estimates -- Some results and discussion -- The analytic signal -- Bibliography -- About the authors.
Synthesis Collection TwoSummary: Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented.The basic signal models and associated estimation theoretical bounds are introduced, and the properties of speech and audio signals are discussed and illustrated. The presented methods include both single- and multi-pitch estimators based on statistical approaches, like maximum likelihood and maximum a posteriori methods, filtering methods based on both static and optimal adaptive designs, and subspace methods based on the principles of subspace orthogonality and shift-invariance. The application of these methods to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and their performance is assessed under various conditions and their properties discussed. Finally, the estimators are compared in terms of computational and statistical efficiency, generalizability and robustness.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
Colección general Colección general Biblioteca Yachay Tech 006.454 C554 2009 (Browse shelf(Opens below)) Ej. 1 Available 001222
Total holds: 0

Includes bibliographical references (p. 125-138) and index.

Fundamentals -- Introduction -- Related work -- Some applications -- Signal models -- Covariance matrix model -- Speech and audio signals -- Other signal models -- Parameter estimation bounds -- Evaluation of pitch estimators -- Statistical methods -- Introduction -- Maximum likelihood estimation -- Noise covariance matrix estimation -- White noise case -- Some maximum a posteriori estimators -- MAP model and order selection -- Fast multi-pitch estimation -- Expectation maximization -- Another related method -- Harmonic fitting -- Some results -- Discussion -- Filtering methods -- Introduction -- Comb filtering -- Filterbank interpretation of NLS -- Optimal filterbank design -- Optimal filter design -- Asymptotic analysis -- Inverse covariance matrix -- Variance and order estimation -- Fast implementation -- Some results -- Discussion -- Subspace methods -- Introduction -- Signal and noise subspace identification -- Subspace properties -- Pre-whitening -- Rank estimation using Eigenvalues -- Angles between subspaces -- Estimation using orthogonality -- Robust estimation -- Estimation using shift-invariance -- Some results -- Discussion -- Amplitude estimation -- Introduction -- Least squares estimation -- Capon- and APES-like amplitude estimates -- Some results and discussion -- The analytic signal -- Bibliography -- About the authors.

Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented.The basic signal models and associated estimation theoretical bounds are introduced, and the properties of speech and audio signals are discussed and illustrated. The presented methods include both single- and multi-pitch estimators based on statistical approaches, like maximum likelihood and maximum a posteriori methods, filtering methods based on both static and optimal adaptive designs, and subspace methods based on the principles of subspace orthogonality and shift-invariance. The application of these methods to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and their performance is assessed under various conditions and their properties discussed. Finally, the estimators are compared in terms of computational and statistical efficiency, generalizability and robustness.

There are no comments on this title.

to post a comment.

Ayuda

X

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono:+593 6299 9500 Ext. 2517

Horario de atención:

X

BIBLIOTECA UNIVERSIDAD YACHAY TECH

  • Área: Acervo Impreso
    Lunes a Viernes de 08h00 a 20h30
    Sábado de 08h00 a 16h30
  • Área: Ingenio
    Abierto 24 horas 7 días
  • Área: Bloque de Servicios, 2do. Piso
    Espacios de Estudio Grupal e Individual, abierto 24 horas 7 días

Recuerda que los espacios son compartidos por toda la comunidad, por lo que debes hacer un uso adecuado
del tiempo que los ocupes, mantenerlos limpios y evitar el daño a las instalaciones y bienes materiales.

También puedes usar nuestros canales de comunicación:

Correo: bibliotecayachaytech@yachaytech.edu.ec
Teléfono: +593 6299 9500 Ext. 2517
Ubicación: San Miguel de Urcuquí, Hacienda San José s/n y Proyecto Yachay

Video

X