Normal view MARC view ISBD view

Foundations of geometric algebra computing / Dietmar Hildenbrand.

By: Hildenbrand, Dietmar.
Material type: materialTypeLabelBookSeries: Copyright date: London : Springer, c2013Edition: First Edition.Description: xxvii, 196 pages : illustrations (some color) ; 24 cm.ISBN: 9783642317934 (alk. paper); 3642317936 (alk. paper).Subject(s): Clifford algebras -- Data processing | Geometrische Algebra | ComputeralgebraDDC classification: 004.0151257
Partial contents:
Introduction -- Mathematical introduction -- Conformal geometric algebra -- Maple and the identification of quaternions and other algebras -- Fitting of planes or spheres to sets of points -- A tutorial on geometric algebra using CLUCalc -- Inverse kinematics of a simple robot -- Robot grasping an object -- Efficient computer animation application in CGA -- Using gaalop for high-performance geometric algebra computing -- Collision detection using the gaalop precompiler -- The gaalop precompiler for GPUs -- Molecular dynamics using gaalop GPC for OpenCL -- Geometric algebra computers.
Abstract: "The author defines "Geometric Algebra Computing" as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics."--
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Copy number Status Date due Item holds
Libro académico Libro académico Biblioteca del Campus
004.0151257 H6429f 2013 (Browse shelf) Ej. 1 Available
Libro académico Libro académico Biblioteca del Campus
004.0151257 H6429f 2013 (Browse shelf) Ej. 2 Available
Libro académico Libro académico Biblioteca del Campus
004.0151257 H6429f 2013 (Browse shelf) Ej. 3 Available
Total holds: 0

Includes index.

Includes bibliographical references (pages 189-194).

Introduction -- Mathematical introduction -- Conformal geometric algebra -- Maple and the identification of quaternions and other algebras -- Fitting of planes or spheres to sets of points -- A tutorial on geometric algebra using CLUCalc -- Inverse kinematics of a simple robot -- Robot grasping an object -- Efficient computer animation application in CGA -- Using gaalop for high-performance geometric algebra computing -- Collision detection using the gaalop precompiler -- The gaalop precompiler for GPUs -- Molecular dynamics using gaalop GPC for OpenCL -- Geometric algebra computers.

"The author defines "Geometric Algebra Computing" as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics."--

There are no comments for this item.

Log in to your account to post a comment.