Normal view MARC view ISBD view

Classical mechanics : systems of particles and Hamiltonian dynamics / Walter Greiner ; with a foreword by D.A. Bromley.

By: Greiner, Walter, 1935-.
Material type: materialTypeLabelBookCopyright date: Heidelberg [Germany] ; New York : Springer, 2010Edition: Second edition.Description: xviii, 579 pages : illustrations ; 26 cm.ISBN: 9783642034336; 3642034330 (pbk. : acidfree paper).Other title: Systems of particles and Hamiltonian dynamics.Uniform titles: Mechanik. Teil 2. English Subject(s): Mechanics, Analytic | Mecánica analítica | Mechanics, Analytic -- Problems, exercises, etcDDC classification: 531.01515 Online resources: Table of contents only
Partial contents:
Newton’s Equations in a Rotating Coordinate System -- Free Fall on the Rotating Earth -- Foucault’s Pendulum -- Degrees of Freedom -- Center of Gravity -- Mechanical Fundamental Quantities of Systems of Mass Points -- Vibrations of Coupled Mass Points -- The Vibrating String -- Fourier Series -- The Vibrating Membrane -- Rotation About a Fixed Axis -- Rotation About a Point -- Theory of the Top -- Generalized Coordinates -- D’Alembert Principle and Derivation of the Lagrange Equations -- Lagrange Equation for Nonholonomic Constraints -- Special Problems -- Hamilton’s Equations -- Canonical Transformations -- Hamilton–Jacobi Theory -- Extended Hamilton–Lagrange Formalism -- Extended Hamilton–Jacobi Equation -- Dynamical Systems -- Stability of Time-Dependent Paths -- Bifurcations -- Lyapunov Exponents and Chaos -- Systems with Chaotic Dynamics -- Emergence of Occidental Physics in the Seventeenth Century.
Abstract: The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Copy number Status Date due Item holds
Libro académico Libro académico Biblioteca del Campus
531.01515 G8248c 2010 (Browse shelf) Ej. 1 Available
Libro académico Libro académico Biblioteca del Campus
531.01515 G8248c 2010 (Browse shelf) Ej. 2 Available
Libro académico Libro académico Biblioteca del Campus
531.01515 G8248c 2010 (Browse shelf) Ej. 3 Available
Total holds: 0

"With 280 figures and 167 worked examples and exercises."

Includes index.

"This new edition is completely revised and updated. New exercises and new sections in canonical transformations and Hamiltonian theory have been added"--P. [4] of cover.

Revised translation of: Mechanik. Teil 2. Frankfurt am Main, Germany : Verlag Harri Deutsch, c1989.

"Recommendations for further reading on classical mechanics": p. 573-574.

Includes bibliographical references.

Newton’s Equations in a Rotating Coordinate System -- Free Fall on the Rotating Earth -- Foucault’s Pendulum -- Degrees of Freedom -- Center of Gravity -- Mechanical Fundamental Quantities of Systems of Mass Points -- Vibrations of Coupled Mass Points -- The Vibrating String -- Fourier Series -- The Vibrating Membrane -- Rotation About a Fixed Axis -- Rotation About a Point -- Theory of the Top -- Generalized Coordinates -- D’Alembert Principle and Derivation of the Lagrange Equations -- Lagrange Equation for Nonholonomic Constraints -- Special Problems -- Hamilton’s Equations -- Canonical Transformations -- Hamilton–Jacobi Theory -- Extended Hamilton–Lagrange Formalism -- Extended Hamilton–Jacobi Equation -- Dynamical Systems -- Stability of Time-Dependent Paths -- Bifurcations -- Lyapunov Exponents and Chaos -- Systems with Chaotic Dynamics -- Emergence of Occidental Physics in the Seventeenth Century.

The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics.

There are no comments for this item.

Log in to your account to post a comment.